Clustering Vessel Trajectories with Alignment Kernels under Trajectory Compression

نویسندگان

  • Gerben de Vries
  • Maarten van Someren
چکیده

In this paper we apply a selection of alignment measures, such as dynamic time warping and edit distance, to the problem of clustering vessel trajectories. Vessel trajectories are an example of moving object trajectories, which have recently become an important research topic. The alignment measures are defined as kernels to allow for use in the kernel k-means clustering method. Furthermore, we investigate the performance of these alignment kernels in combination with a trajectory compression method. Experiments on a gold standard dataset indicate that compression has a positive effect on clustering performance for a number of alignment measures. Also, soft-max kernels, based on summing all alignments, perform worse than classic kernels, based on taking the score of the best alignment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning for vessel trajectories using compression, alignments and domain knowledge

Please cite this article in press as: de Vries, G. K. knowledge. Expert Systems with Applications (20 In this paper we present a machine learning framework to analyze moving object trajectories from maritime vessels. Within this framework we perform the tasks of clustering, classification and outlier detection with vessel trajectory data. First, we apply a piecewise linear segmentation method t...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

Spatio-Temporal Convolution Kernels for Clustering Trajectories

We propose a novel class of kernels to identify tactical patterns in multi-trajectory data such as soccer games. Formally, we introduce a group of R-convolution kernels called Spatio-Temporal Convolution Kernels composed of a temporal and a spatial kernel. The particular choice of the component kernels depends on the application at hand. For the purpose of clustering player and ball trajectorie...

متن کامل

Trajectory Planning Using High Order Polynomials under Acceleration Constraint

The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...

متن کامل

Learning and Classification of Car Trajectories in Road Video by String Kernels

An abnormal behavior of a moving vehicule or a moving person is characterized by an unusual or not expected trajectory. The definition of exptected trajectories refers to supervised learning where an human operator should define expected behaviors. Conversely, definition of usual trajectories, requires to learn automatically the dynamic of a scene in order to extract its typical trajectories. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010